第二百八十一章 孤独的艺术家?
1/2+it)/(t^e)=o(√plnp)】
写下这两道式子,林晓眉头皱起,开始思索起来。
第一行式子,他有印象。
“这似乎是……黎曼猜想?好像是黎曼猜想的弱化形式?”
想到这,林晓心中一震。
黎曼猜想的弱形式中,有一个林德勒夫猜想。
林德勒夫猜想是关于ζ函数于临界线上的增长速度的猜想,其表明了给出任意的e大于0,当t趋向于无限时,ζ(1/2+it)等于o(t^e),这对于黎曼猜想来说,是一种比较弱的形式,它最终能够推导出“给出任意e大于0,对足够大的n有pn+1-pn小于pn^e(1/2+e)”。
不过,随后林晓又将注意力转到了第二行式子上,再次生出了疑惑。
这个,又是什么意思?
√plnp?
莫非等于说,上面那个式子经过形式的变换后,能够推导出下面的这个等式?
但猛然间,他的脑海中灵光一闪,再次想起了一个关于黎曼猜想的弱形式,也就是大质数间隙猜想,而这是一个比林德勒夫猜想要强一些的猜想。
而该猜想认为,如果黎曼猜想
<本章未完请点击"下一页"继续观看!>