第49章 真是天才
人员使用计算机本质上猜测了数百万个关系,并费劲地提取了重要积分的组合。
但是,有了相交数,物理学家可能已经找到了一种方法,可以从庞大的费曼积分计算中从容地提取出基本信息。
几何指纹
马斯特罗利亚和米塞拉的工作植根于称为代数拓扑的纯数学分支,该数学对形状和空间进行了分类。数学家使用“同调”理论进行这种分类,这使他们能够从复杂的几何空间中提取代数指纹。
法国蒙彼利埃大学的数学家克莱门特·杜邦说:“这是一个总结,是一个代数小工具,融合了您想学习的空间的本质。”
费曼图可以转换为适合通过同调分析的几何空间。这些空间内的每个点可能代表了多个场景中的一种,当两个粒子碰撞时,这些场景可能会出现。
您可能天真地希望通过采用该空间的同调性(找到其代数结构),可以计算支持该空间的主积分的权重。但是,表征大多数费曼图的几何空间类型以一种可以抵抗许多同调计算的方式发生了扭曲。
2017年,米塞拉艰难地分析了弦论中的对象是如何碰撞的,当时他偶然发现了由以色列杰尔芬德和安本和彦,在20世纪70年代和80年代率先使用的称为“古怪的上
<本章未完请点击"下一页"继续观看!>